Аксиома

Что такое Аксиома? Значение слова «Аксиома» в популярных словарях и энциклопедиях, примеры употребления термина в повседневной жизни.

Значение «Аксиома» в словарях

Аксиома

Философский словарь
(от греч. axioma - значимое, принятое положение) - исходное, принимаемое без доказательства положение к.-л. теории, лежащее в основе доказательств других ее положений. Долгое время термин "А." понимался не просто как отправной пункт доказательств, но и как истинное положение, не нуждающееся в особом доказательстве в силу его самоочевидности, наглядности, ясности и т. п. Так, Аристотель (384-322 до н. э.) считал, что А. (начала) не требуют доказательства по причине своей ясности и простоты. Древнегреческий математик Евклид (III в. до н. э.) рассматривал принятые им геометрические А. как самоочевидные истины, достаточные для выведения всех других истин геометрии. Нередко А. трактовались как вечные и непреложные истины, известные до всякого опыта и не зависящие от него, попытка обоснования которых могла только подорвать их очевидность. Переосмысление проблемы обоснования А. изменило и содержание самого термина "А.". А. являются не исходным началом познания, а скорее его промежуточным результатом. Они обосновываются не сами по себе, а в качестве необходимых составных элементов теории: подтверждение последней есть одновременно и подтверждение ее А. Критерии =-svoboda-vybora-6366.html">выбора А. меняются от теории к теории и являются во многом прагматическими, учитывающими соображения краткости, удобства манипулирования, минимизации числа исходных понятий и т. п. В частности, в формальном исчислении, класс теорем которого уже известен, А. - это просто одна из тех формул, из которых выводятся остальные доказуемые формулы. Если, однако, теория еще не определена однозначно, выбор ее А. может диктоваться и содержательными соображениями.
Подробнее

Аксиома

Словарь логики
(от греч. axioma — значимое, принятое положение)  — исходное, принимаемое без доказательства положение к.-л. теории, лежащее в основе доказательств других ее положений. еся в особом доказательстве в силу его самоочевидности, нагляд­ности, ясности и т. п. Так, Аристотель (384—322 до н. э.) считал, что А. (начала) не требуют доказательства по причине своей яс­ности и простоты. Древнегреческий математик Евклид (III в. до н. э.) рассматривал принятые им геометрические А. как самооче­видные истины, достаточные для выведения всех других истин геометрии. Нередко А. трактовались как вечные и непреложные истины, известные до всякого опыта и не зависящие от него, попытка обоснования которых могла только подорвать их оче­видность. Переосмысление проблемы обоснования А. изменило и содер­жание самого термина «А.». А. являются не исходным началом познания, а скорее его промежуточным результатом. Они обосно­вываются не сами по себе, а в качестве необходимых составных элементов теории: подтверждение последней есть одновременно и подтверждение ее А. Критерии выбора А. меняются от теории к теории и являются во многом прагматическими, учитывающими соображения краткости, удобства манипулирования, минимиза­ции числа исходных понятий и т. п. В частности, в формальном исчислении, класс теорем которого уже известен, А. — это просто одна из тех формул, из которых выводятся остальные доказуе­мые формулы. Если, однако, теория еще не определена однознач­но, выбор ее А. может диктоваться и содержательными соображе­ниями.
Подробнее

Аксиома

Большой Энциклопедический Словарь
(греч. axioma) - положение, принимаемое без логическогодоказательства в силу непосредственной убедительности; истинное исходноеположение теории.
Подробнее

Аксиома

Политический словарь
(гр. axioma значимость, требование) - исходное положение какой-л. теории, лежащее в основе доказательств др. положений этой теории, в пределах которой оно принимается без доказательства.
Подробнее

Аксиома

Психологический словарь
Предложение, правильность которого считается очевидной. Аксиомы не подлежат доказательству или опровержению. В структуре логической теории аксиомы составляют фундаментальные, примитивные элементы, на которых основывается вся теория. Следует отличать от постулата, истинность которого не принята как очевидная и должна рассматриваться с помощью цепи рассуждений. См. предположение, аксиоматический.
Подробнее

Аксиома

Социологический словарь
(axiom) — (и в геометрии, и в социальной теории) не нуждающееся в доказательстве утверждение, постулат модели или теории, из которых могут быть получены другие суждения. См. Формальная теория и формализация  теории. 
Подробнее

Аксиома

Философский словарь
- исходное положение научной теории, принимаемое в качестве истинного без логического доказательства и лежащее в основе доказательств других положений этой теории.
Подробнее

Аксиома

Философский словарь
- принятое положение, положение некоторой научной теории, которое берется в качестве исходного, недоказуемого в данной теории, т.е. (на веру), и из которого выводятся все остальные предложения теории по принятым в ней правилам вывода. Синонимом слова аксиома является - постулат: говорят "я постулирую то-то и то-то", а далее начинают рассуждать по принятым в данном размышлении законам логики. Поскольку аксиома берется на веру, то при добросовестном (честном) подходе, она должна быть предметом критического восприятия и дополнительного внимания во всех принципиально важных ситуациях, то есть везде, где решаются не чисто теоретические (например, религия), а практические задачи поиска истины. В последнем случае обычно в качестве аксиом используют хорошо известные, многократно проверенные вещи (понятия).
Подробнее

Аксиома

Философский словарь
(от греч. axioma - значимость, требование) - исходное положение, которое не может быть доказано, но в то же время и не нуждается в доказательстве, т. к. является совершенно очевидным и поэтому может служить исходным положением для др. положений (см. Дедукция). Логическими аксиомами являются: закон тождества, закон противоречия, закон исключенного третьего (см. Exclusi tertii principium), закон достаточного основания. тика - учение об определениях и доказательствах в их отношении к системе аксиом. Ср. Логистика.
Подробнее

Аксиома

Философский словарь
(греч. axioma — принятое положение) — исходное утверждение (предложение) к.-л. научной теории, к-рое берется в качестве недоказуемого в данной теории и из к-рого (или совокупности к-рых) выводятся все остальные предложения теории по принятым в ней правилам вывода (ср. Постулат). Начиная с античности и вплоть до средины 19 в. А. рассматривались как интуитивно очевидные или априорно истинные предложения. При этом упускалась из виду их обусловленность человеческой практически-познавательной деятельностью. Ленин писал, что практическая деятельность человека, миллиарды раз повторяясь, закрепляется в его сознании фигурами логики, к-рые в силу этого многократного повторения получают значение аксиом. Совр. понимание аксиоматического метода требует от А. выполнения лишь одного условия: быть исходными положениями для вывода с помощью принятых логических правил всех остальных предложений (теорем) данной теории. Вопрос об истинности А. решается или в рамках др. научных теорий, или при нахождении интерпретации (Интерпретация и модель) данной системы: реализация нек-рой формализованной аксиоматической системы в той или иной предметной области свидетельствует об истинности принятых в ней А.
Подробнее

Аксиома

Словарь Даля
ж. греч. очевидность, ясная по себе и бесспорная истина, не требующая доказательств, напр. целое всегда, больше части своей; основная истина, самоистина, ясноистина.
Подробнее

Аксиома

Толковый словарь Ожегова
Исходное положение, принимаемое без доказательств и лежащее в основе доказательств истинности других положений Spec
Подробнее

Аксиома

Толковый словарь Ожегова
Положение, принимаемое без доказательств Lib
Подробнее

Аксиома

Психологическая энциклопедия
Предложение, правильность которого считается очевидной. Аксиомы не подлежат доказательству или опровержению. В структуре логической теории аксиомы составляют фундаментальные, примитивные элементы, на которых основывается вся теория. Следует отличать от постулата, истинность которого не принята как очевидная и должна рассматриваться с помощью цепи рассуждений. См. предположение, аксиоматический.
Подробнее